Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
J Agric Food Chem ; 72(4): 1878-1884, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-37293927

Varietal thiols have an impact on the overall aroma of many white, rosé, and red wines and beers. They originate from the metabolism of non-odorant aroma precursors by yeast during the fermentation step, via an intrinsic enzyme, the carbon-sulfur ß-lyase (CSL, EC 4.4.1.13). However, this metabolism is directly dependent upon efficient internalization of aroma precursors and intracellular CSL activity. Consequently, the overall CSL activity converts on average only 1% of the total precursors available. To improve the conversion of thiol precursors during winemaking or brewing, we investigated the possibility of using an exogenous CSL enzyme from Lactobacillus delbrueckii subsp. bulgaricus produced in Escherichia coli. We first implemented a reliable spectrophotometric method to monitor its activity on different related aroma precursors and studied its activity in the presence of various competing analogues and at different pH values. This study allowed us to highlight the parameters to define CSL activity and structural insights for the recognition of the substrate, which pave the way for the use of exogenous CSL for the release of aromas in beer and wine.


Lyases , Wine , Wine/analysis , Beer , Odorants/analysis , Lyases/metabolism , Sulfhydryl Compounds/metabolism , Saccharomyces cerevisiae/metabolism , Carbon-Sulfur Lyases/metabolism , Fermentation
2.
Cancers (Basel) ; 15(8)2023 Apr 18.
Article En | MEDLINE | ID: mdl-37190273

The imaging of Prostate-Specific Membrane Antigen (PSMA) is now widely used at the initial staging of prostate cancers in patients with a high metastatic risk. However, its ability to detect low-grade tumor lesions is not optimal. METHODS: First, we prospectively performed neurotensin receptor-1 (NTS1) IHC in a series of patients receiving both [68Ga]Ga-PSMA-617 and [68Ga]Ga-RM2 before prostatectomy. In this series, PSMA and GRP-R IHC were also available (n = 16). Next, we aimed at confirming the PSMA/GRP-R/NTS1 expression profile by retrospective autoradiography (n = 46) using a specific radiopharmaceuticals study and also aimed to decipher the expression of less-investigated targets such as NTS2, SST2 and CXCR4. RESULTS: In the IHC study, all samples with negative PSMA staining (two patients with ISUP 2 and one with ISUP 3) were strongly positive for NTS1 staining. No samples were negative for all three stains-for PSMA, GRP-R or NTS1. In the autoradiography study, binding of [111In]In-PSMA-617 was high in all ISUP groups. However, some samples did not bind or bound weakly to [111In]In-PSMA-617 (9%). In these cases, binding of [111n]In-JMV 6659 and [111In]In-JMV 7488 towards NTS1 and NTS2 was high. CONCLUSIONS: Targeting PSMA and NTS1/NTS2 could allow for the detection of all intraprostatic lesions.

3.
ACS Omega ; 8(7): 6994-7004, 2023 Feb 21.
Article En | MEDLINE | ID: mdl-36844603

Neurotensin receptor 2 (NTS2) is a well-known mediator of central opioid-independent analgesia. Seminal studies have highlighted NTS2 overexpression in a variety of tumors including prostate cancer, pancreas adenocarcinoma, and breast cancer. Herein, we describe the first radiometalated neurotensin analogue targeting NTS2. JMV 7488 (DOTA-(ßAla)2-Lys-Lys-Pro-(D)Trp-Ile-TMSAla-OH) was prepared using solid-phase peptide synthesis, then purified, radiolabeled with 68Ga and 111In, and investigated in vitro on HT-29 cells and MCF-7 cells, respectively, and in vivo on HT-29 xenografts. [68Ga]Ga-JMV 7488 and [111In]In-JMV 7488 were quite hydrophilic (logD7.4 = -3.1 ± 0.2 and -2.7 ± 0.2, respectively, p < 0.0001). Saturation binding studies showed good affinity toward NTS2 (K D = 38 ± 17 nM for [68Ga]Ga-JMV 7488 on HT-29 and 36 ± 10 nM on MCF-7 cells; K D = 36 ± 4 nM for [111In]In-JMV 7488 on HT-29 and 46 ± 1 nM on MCF-7 cells) and good selectivity (no NTS1 binding up to 500 nM). On cell-based evaluation, [68Ga]Ga-JMV 7488 and [111In]In-JMV 7488 showed high and fast NTS2-mediated internalization of 24 ± 5 and 25 ± 11% at 1 h for [111In]In-JMV 7488, respectively, along with low NTS2-membrane binding (<8%). Efflux was as high as 66 ± 9% at 45 min for [68Ga]Ga-JMV 7488 on HT-29 and increased for [111In]In-JMV 7488 up to 73 ± 16% on HT-29 and 78 ± 9% on MCF-7 cells at 2 h. Maximum intracellular calcium mobilization of JMV 7488 was 91 ± 11% to that of levocabastine, a known NTS2 agonist on HT-29 cells demonstrating the agonist behavior of JMV 7488. In nude mice bearing HT-29 xenograft, [68Ga]Ga-JMV 7488 showed a moderate but promising significant tumor uptake in biodistribution studies that competes well with other nonmetalated radiotracers targeting NTS2. Significant uptake was also depicted in lungs. Interestingly, mice prostate also demonstrated [68Ga]Ga-JMV 7488 uptake although the mechanism was not NTS2-mediated.

4.
J Pept Sci ; 29(6): e3471, 2023 Jun.
Article En | MEDLINE | ID: mdl-36539999

Chronic pain is one of the most critical health issues worldwide. Despite considerable efforts to find therapeutic alternatives, opioid drugs remain the gold standard for pain management. The administration of µ-opioid receptor (MOR) agonists is associated with detrimental and limiting adverse effects. Overall, these adverse effects strongly overshadow the effectiveness of opioid therapy. In this context, the development of neurotensin (NT) ligands has shown to be a promising approach for the management of chronic and acute pain. NT exerts its opioid-independent analgesic effects through the binding of two G protein-coupled receptors (GPCRs), NTS1 and NTS2. In the last decades, modified NT analogues have been proven to provide potent analgesia in vivo. However, selective NTS1 and nonselective NTS1/NTS2 ligands cause antinociception associated with hypothermia and hypotension, whereas selective NTS2 ligands induce analgesia without altering the body temperature and blood pressure. In light of this, various structure-activity relationship (SAR) studies provided findings addressing the binding affinity of ligands towards NTS2. Herein, we comprehensively review peptide-based NTS2-selective ligands as a robust alternative for future pain management. Particular emphasis is placed on SAR studies governing the desired selectivity and associated in vivo results.


Pain Management , Receptors, Neurotensin , Humans , Receptors, Neurotensin/agonists , Receptors, Neurotensin/metabolism , Amino Acids , Analgesics, Opioid/therapeutic use , Peptides/pharmacology , Peptides/therapeutic use , Peptides/chemistry , Neurotensin/metabolism , Pain/drug therapy , Ligands
5.
Chemistry ; 28(47): e202201526, 2022 Aug 22.
Article En | MEDLINE | ID: mdl-35686562

Synthesis of fluorescent P-hydroxybinaphtylphosphole-oxide or -sulfide was achieved by trapping a binaphtyl dianion with methyl dichlorophosphite or P-(N,N-diethylamino)dichlorophosphine, followed by oxidation or sulfuration of the P-center. After saponification or acid hydrolysis, the P-hydroxyphospholes were coupled to peptides using the coupling agent BOP, under the conditions required for the synthesis in solution or on a solid support. This new method was illustrated by the labeling of the JMV2959, a potent antagonist of the Growth Hormone Secretagogue Receptor type 1a (GHS-R1a). The labeled conjugates were used to characterize GHSR ligands by competition assays, based on Fluorescence Resonance Energy Transfer (FRET). Such P-hydroxyphosphole-oxide or -sulfide constitute a promising new class of compact fluorophores with large Stokes shift, for labeling biomolecules by grafting through the phosphorus atom.


Peptides , Receptors, Ghrelin , Ligands , Oxides , Sulfides
6.
Behav Brain Res ; 405: 113189, 2021 05 07.
Article En | MEDLINE | ID: mdl-33607165

The endogenous tridecapeptide neurotensin (NT) has emerged as an important inhibitory modulator of pain transmission, exerting its analgesic action through the activation of the G protein-coupled receptors, NTS1 and NTS2. Whereas both NT receptors mediate the analgesic effects of NT, NTS1 activation also produces hypotension and hypothermia, which may represent obstacles for the development of new pain medications. In the present study, we implemented various chemical strategies to improve the metabolic stability of the biologically active fragment NT(8-13) and assessed their NTS1/NTS2 relative binding affinities. We then determined their ability to reduce the nociceptive behaviors in acute, tonic, and chronic pain models and to modulate blood pressure and body temperature. To this end, we synthesized a series of NT(8-13) analogs carrying a reduced amide bond at Lys8-Lys9 and harboring site-selective modifications with unnatural amino acids, such as silaproline (Sip) and trimethylsilylalanine (TMSAla). Incorporation of Sip and TMSAla respectively in positions 10 and 13 of NT(8-13) combined with the Lys8-Lys9 reduced amine bond (JMV5296) greatly prolonged the plasma half-life time over 20 h. These modifications also led to a 25-fold peptide selectivity toward NTS2. More importantly, central delivery of JMV5296 was able to induce a strong antinociceptive effect in acute (tail-flick), tonic (formalin), and chronic inflammatory (CFA) pain models without inducing hypothermia. Altogether, these results demonstrate that the chemically-modified NT(8-13) analog JMV5296 exhibits a better therapeutic profile and may thus represent a promising avenue to guide the development of new stable NT agonists and improve pain management.


Acute Pain/drug therapy , Analgesia , Analgesics/pharmacology , Behavior, Animal/drug effects , Chronic Pain/drug therapy , Neurotensin/pharmacology , Nociceptive Pain/drug therapy , Analgesics/chemistry , Animals , Disease Models, Animal , Male , Neurotensin/analysis , Rats , Rats, Sprague-Dawley
7.
Mar Drugs ; 19(2)2021 Jan 23.
Article En | MEDLINE | ID: mdl-33498789

Aurilides are a class of depsipeptides occurring mainly in marine cyanobacteria. Members of the aurilide family have shown to exhibit strong cytotoxicity against various cancer cell lines. These compounds bear a pentapeptide, a polyketide, and an α-hydroxy ester subunit in their structure. A large number of remarkable studies on aurilides have emerged since 1996. This comprehensive account summarizes the biological activities and total syntheses of natural compounds of the aurilide family as well as their synthetic analogues.


Aquatic Organisms , Biological Products/chemistry , Depsipeptides/biosynthesis , Depsipeptides/chemistry , Animals , Biological Products/therapeutic use , Depsipeptides/therapeutic use , Humans , Neoplasms/drug therapy
8.
Food Chem ; 339: 127628, 2021 Mar 01.
Article En | MEDLINE | ID: mdl-32866707

Volatile thiols are very strong-smelling molecules that can impact the aroma of numerous beverages. Several thiols and thiol precursors have been reported previously in different plants used as raw material for beverages, some of which are fermented. We focused on thiols in beverages and their release mechanisms from precursors during processing. Volatile thiols in beverages can be classified aslow molecular weight volatile thiols (e.g. H2S, methanethiol) which impact the smell negatively, and volatile thiols with higher boiling points that contribute positively to the aroma profile. The first part of this review is devoted to volatile thiols, without considering small malodorous molecules. The second part deals with thiol precursors and the different release mechanisms induced by processing (e.g. extraction, roasting or fermentation) and by the growing methods (e.g. viticulture), which can impact on amounts of thiols and their precursors.


Beverages/analysis , Sulfhydryl Compounds/analysis , Volatile Organic Compounds/analysis , Fermentation , Food-Processing Industry , Odorants/analysis , Sulfhydryl Compounds/chemistry , Volatile Organic Compounds/chemistry
9.
J Med Chem ; 63(21): 12929-12941, 2020 11 12.
Article En | MEDLINE | ID: mdl-32902268

Fusion of nonopioid pharmacophores, such as neurotensin, with opioid ligands represents an attractive approach for pain treatment. Herein, the µ-/δ-opioid agonist tetrapeptide H-Dmt-d-Arg-Aba-ß-Ala-NH2 (KGOP01) was fused to NT(8-13) analogues. Since the NTS1 receptor has been linked to adverse effects, selective MOR-NTS2 ligands are preferred. Modifications were introduced within the native NT sequence, particularly a ß3-homo amino acid in position 8 and Tyr11 substitutions. Combination of ß3hArg and Dmt led to peptide 7, a MOR agonist, showing the highest NTS2 affinity described to date (Ki = 3 pM) and good NTS1 affinity (Ki = 4 nM), providing a >1300-fold NTS2 selectivity. The (6-OH)Tic-containing analogue 9 also exhibited high NTS2 affinity (Ki = 1.7 nM), with low NTS1 affinity (Ki = 4.7 µM), resulting in an excellent NTS2 selectivity (>2700). In mice, hybrid 7 produced significant and prolonged antinociception (up to 8 h), as compared to the KGOP01 opioid parent compound.


Drug Design , Peptides/chemistry , Receptors, Neurotensin/metabolism , Receptors, Opioid, delta/metabolism , Receptors, Opioid, mu/metabolism , Amino Acid Sequence , Animals , Disease Models, Animal , Humans , Male , Mice , Oligopeptides/chemistry , Oligopeptides/metabolism , Oligopeptides/therapeutic use , Pain/drug therapy , Pain/pathology , Peptides/metabolism , Peptides/therapeutic use , Protein Binding , Receptors, Neurotensin/chemistry , Receptors, Opioid, delta/agonists , Receptors, Opioid, mu/agonists , Structure-Activity Relationship
10.
Bioconjug Chem ; 31(10): 2339-2349, 2020 10 21.
Article En | MEDLINE | ID: mdl-32887526

Several independent studies have demonstrated the overexpression of NTS1 in various malignancies, which make this receptor of interest for imaging and therapy. To date, radiolabeled neurotensin analogues suffer from low plasmatic stability and thus insufficient availability for high uptake in tumors. We report the development of 68Ga-radiolabeled neurotensin analogues with improved radiopharmaceutical properties through the introduction of the silicon-containing amino acid trimethylsilylalanine (TMSAla). Among the series of novel radiolabeled neurotensin analogues, [68Ga]Ga-JMV6659 exhibits high hydrophilicity (log D7.4 = -3.41 ± 0.14), affinity in the low nanomolar range toward NTS1 (Kd = 6.29 ± 1.37 nM), good selectivity (Kd NTS1/Kd NTS2 = 35.9), and high NTS1-mediated internalization. It has lower efflux and prolonged plasmatic half-life in human plasma as compared to the reference compound ([68Ga]Ga-JMV6661 bearing the minimum active fragment of neurotensin and the same linker and chelate as other analogues). In nude mice bearing HT-29 xenograft, [68Ga]Ga-JMV6659 uptake reached 7.8 ± 0.54 %ID/g 2 h post injection. Uptake was decreased to 1.38 ± 0.71 %ID/g with injection of excess of non-radioactive neurotensin. Radiation dose as extrapolated to human was estimated as 2.35 ± 0.6 mSv for a standard injected activity of 100MBq. [68Ga]Ga-JMV6659 was identified as a promising lead compound suitable for PET imaging of NTS1-expressing tumors.


Neoplasms/diagnostic imaging , Neurotensin/analogs & derivatives , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Receptors, Neurotensin/analysis , Silicon/chemistry , Animals , HT29 Cells , Humans , Mice, Nude
11.
Data Brief ; 31: 105884, 2020 Aug.
Article En | MEDLINE | ID: mdl-32637491

Neurotensin (NT) is a tridecapeptide displaying interesting antinociceptive properties through its action on its receptors, NTS1 and NTS2. Neurotensin-like compounds have been shown to exert better antinociceptive properties than morphine at equimolar doses. In this article, we characterized the molecular effects of a novel neurotensin (8-13) (NT(8-13)) analog containing an unnatural amino acid. This compound, named JMV2009, displays a Silaproline in position 10 in replacement of a proline in the native NT(8-13). We first examined the binding affinities of this novel NT(8-13) derivative at both NTS1 and NTS2 receptor sites by performing competitive displacement of iodinated NT on purified cell membranes. Then, we evaluated the ability of JMV2009 to activate NTS1-related G proteins as well as to promote the recruitment of ß-arrestins 1 and 2 by using BRET-based cellular assays in live cells. We next assessed its ability to induce p42/p44 MAPK phosphorylation and NT receptors internalization using western blot and cell-surface ELISA, respectively. Finally, we determined the in vitro plasma stability of this NT derivative. This article is associated with the original article "Pain relief devoid of opioid side effects following central action of a silylated neurotensin analog" published in European Journal of Pharmacology[1]. The reader is directed to the associated article for results interpretation, comments, and discussion.

12.
Front Chem ; 8: 406, 2020.
Article En | MEDLINE | ID: mdl-32582624

Therapeutic hypothermia represents a brain-protective strategy for multiple emergency situations, such as stroke or traumatic injury. Neurotensin (NT), which exerts its effects through activation of two G protein-coupled receptors, namely NTS1 and NTS2, induces a strong and long-lasting decrease in core body temperature after its central administration. Growing evidence demonstrates that NTS1 is the receptor subtype mediating the hypothermic action of NT. As such, potent NTS1 agonists designed on the basis of the minimal C-terminal NT(8-13) bioactive fragment have been shown to produce mild hypothermia and exert neuroprotective effects under various clinically relevant conditions. The high susceptibility of NT(8-13) to protease degradation (half-life <2 min) represents, however, a serious limitation for its use in pharmacological therapy. In light of this, we report here a structure-activity relationship study in which pairs of NT(8-13) analogs have been developed, based on the incorporation of a reduced Lys8-Lys9 bond. To further stabilize the peptide bonds, a panel of backbone modifications was also inserted along the peptide sequence, including Sip10, D-Trp11, Dmt11, Tle12, and TMSAla13. Our results revealed that the combination of appropriate chemical modifications leads to compounds exhibiting improved resistance to proteolytic cleavages (>24 h; 16). Among them, the NT(8-13) analogs harboring the reduced amine bond combined with the unnatural amino acids TMSAla13 (4) and Sip10 (6) or the di-substitution Lys11 - TMSAla13 (12), D-Trp11-TMSAla13 (14), and Dmt11-Tle12 (16) produced sustained hypothermic effects (-3°C for at least 1 h). Importantly, we observed that hypothermia was mainly driven by the increased stability of the NT(8-13) derivatives, instead of the high binding-affinity at NTS1. Altogether, these results reveal the importance of the reduced amine bond in optimizing the metabolic properties of the NT(8-13) peptide and support the development of stable NTS1 agonists as first drug candidate in neuroprotective hypothermia.

13.
Eur J Pharmacol ; 882: 173174, 2020 Sep 05.
Article En | MEDLINE | ID: mdl-32534076

Neurotensin (NT) exerts naloxone-insensitive antinociceptive action through its binding to both NTS1 and NTS2 receptors and NT analogs provide stronger pain relief than morphine on a molecular basis. Here, we examined the analgesic/adverse effect profile of a new NT(8-13) derivative denoted JMV2009, in which the Pro10 residue was substituted by a silicon-containing unnatural amino acid silaproline. We first report the synthesis and in vitro characterization (receptor-binding affinity, functional activity and stability) of JMV2009. We next examined its analgesic activity in a battery of acute, tonic and chronic pain models. We finally evaluated its ability to induce adverse effects associated with chronic opioid use, such as constipation and analgesic tolerance or related to NTS1 activation, like hypothermia. In in vitro assays, JMV2009 exhibited high binding affinity for both NTS1 and NTS2, improved proteolytic resistance as well as agonistic activities similar to NT, inducing sustained activation of p42/p44 MAPK and receptor internalization. Intrathecal injection of JMV2009 produced dose-dependent antinociceptive responses in the tail-flick test and almost completely abolished the nociceptive-related behaviors induced by chemical somatic and visceral noxious stimuli. Likewise, increasing doses of JMV2009 significantly reduced tactile allodynia and weight bearing deficits in nerve-injured rats. Importantly, repeated agonist treatment did not result in the development of analgesic tolerance. Furthermore, JMV2009 did not cause constipation and was ineffective in inducing hypothermia. These findings suggest that NT drugs can act as an effective opioid-free medication for the management of pain or can serve as adjuvant analgesics to reduce the opioid adverse effects.


Analgesics/therapeutic use , Neurotensin/analogs & derivatives , Neurotensin/therapeutic use , Pain/drug therapy , Receptors, Neurotensin/agonists , Analgesics/pharmacology , Animals , Blood Pressure/drug effects , Body Temperature/drug effects , Gastrointestinal Motility/drug effects , Hyperalgesia/drug therapy , Hyperalgesia/physiopathology , Male , Neurotensin/pharmacology , Pain/physiopathology , Rats, Sprague-Dawley , Receptors, Neurotensin/physiology
14.
ACS Chem Neurosci ; 10(11): 4535-4544, 2019 11 20.
Article En | MEDLINE | ID: mdl-31589400

Neurotensin (NT) exerts its analgesic effects through activation of the G protein-coupled receptors NTS1 and NTS2. This opioid-independent antinociception represents a potential alternative for pain management. While activation of NTS1 also induces a drop in blood pressure and body temperature, NTS2 appears to be an analgesic target free of these adverse effects. Here, we report modifications of NT at Tyr11 to increase selectivity toward NTS2, complemented by modifications at the N-terminus to impair proteolytic degradation of the biologically active NT(8-13) sequence. Replacement of Tyr11 by either 6-OH-Tic or 7-OH-Tic resulted in a significant loss of binding affinity to NTS1 and subsequent NTS2 selectivity. Incorporation of the unnatural amino acid ß3hLys at position 8 increased the half-life to over 24 h in plasma. Simultaneous integration of both ß3hLys8 and 6-OH-Tic11 into NT(8-13) produced a potent and NTS2-selective analogue with strong analgesic action after intrathecal delivery in the rat formalin-induced pain model with an ED50 of 1.4 nmol. Additionally, intravenous administration of this NT analogue did not produce persistent hypotension or hypothermia. These results demonstrate that NT analogues harboring unnatural amino acids at positions 8 and 11 can enhance crucial pharmacokinetic and pharmacodynamic features for NT(8-13) analogues, i.e., proteolytic stability, NTS2 selectivity, and improved analgesic/adverse effect ratio.


Analgesia/methods , Hypotension/metabolism , Hypothermia/metabolism , Neurotensin/analogs & derivatives , Receptors, Neurotensin/metabolism , Tyrosine/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Humans , Hypotension/chemically induced , Hypothermia/chemically induced , Male , Neurotensin/toxicity , Pain Measurement/drug effects , Pain Measurement/methods , Protein Binding/drug effects , Protein Binding/physiology , Rats , Rats, Sprague-Dawley , Receptors, Neurotensin/agonists , Tyrosine/genetics
15.
Biochem J ; 476(15): 2221-2233, 2019 08 09.
Article En | MEDLINE | ID: mdl-31300464

In metal-scarce environments, some pathogenic bacteria produce opine-type metallophores mainly to face the host's nutritional immunity. This is the case of staphylopine, pseudopaline and yersinopine, identified in Staphylococcus aureus, Pseudomonas aeruginosa and Yersinia pestis, respectively. Depending on the species, these metallophores are synthesized by two (CntLM) or three enzymes (CntKLM), CntM catalyzing the last step of biosynthesis using diverse substrates (pyruvate or α-ketoglutarate), pathway intermediates (xNA or yNA) and cofactors (NADH or NADPH). Here, we explored the substrate specificity of CntM by combining bioinformatic and structural analysis with chemical synthesis and enzymatic studies. We found that NAD(P)H selectivity is mainly due to the amino acid at position 33 (S. aureus numbering) which ensures a preferential binding to NADPH when it is an arginine. Moreover, whereas CntM from P. aeruginosa preferentially uses yNA over xNA, the staphylococcal enzyme is not stereospecific. Most importantly, selectivity toward α-ketoacids is largely governed by a single residue at position 150 of CntM (S. aureus numbering): an aspartate at this position ensures selectivity toward pyruvate, whereas an alanine leads to the consumption of both pyruvate and α-ketoglutarate. Modifying this residue in P. aeruginosa led to a complete reversal of selectivity. Thus, the diversity of opine-type metallophore is governed by the absence/presence of a cntK gene encoding a histidine racemase, and the amino acid residue at position 150 of CntM. These two simple rules predict the production of a fourth metallophore by Paenibacillus mucilaginosus, which was confirmed in vitro and called bacillopaline.


Bacteria/metabolism , Bacterial Proteins/metabolism , Imidazoles/metabolism , NADP/metabolism , NAD/metabolism , Oligopeptides/metabolism
16.
J Am Chem Soc ; 141(13): 5555-5562, 2019 04 03.
Article En | MEDLINE | ID: mdl-30901200

Enzymatic regulations are central processes for the adaptation to changing environments. In the particular case of metallophore-dependent metal uptake, there is a need to quickly adjust the production of these metallophores to the metal level outside the cell, to avoid metal shortage or overload, as well as waste of metallophores. In Staphylococcus aureus, CntM catalyzes the last biosynthetic step in the production of staphylopine, a broad-spectrum metallophore, through the reductive condensation of a pathway intermediate (xNA) with pyruvate. Here, we describe the chemical synthesis of this intermediate, which was instrumental in the structural and functional characterization of CntM and confirmed its opine synthase properties. The three-dimensional structure of CntM was obtained in an "open" form, in the apo state or as a complex with substrate or product. The xNA substrate appears mainly stabilized by its imidazole ring through a π-π interaction with the side chain of Tyr240. Intriguingly, we found that metals exerted various and sometime antagonistic effects on the reaction catalyzed by CntM: zinc and copper are moderate activators at low concentration and then total inhibitors at higher concentration, whereas manganese is only an activator and cobalt and nickel are only inhibitors. We propose a model in which the relative affinity of a metal toward xNA and an inhibitory binding site on the enzyme controls activation, inhibition, or both as a function of metal concentration. This metal-dependent regulation of a metallophore-producing enzyme might also take place in vivo, which could contribute to the adjustment of metallophore production to the internal metal level.


Imidazoles/metabolism , Metals, Heavy/metabolism , Oxidoreductases/metabolism , Metals, Heavy/chemistry , Models, Molecular , Molecular Conformation , Staphylococcus aureus/enzymology
17.
Food Chem ; 268: 126-133, 2018 Dec 01.
Article En | MEDLINE | ID: mdl-30064739

The varietal thiols 3-mercaptohexan-1-ol (3MH), 3-mercaptohexyl acetate (3MHA), and 4-mercapto-4-methylpentan-2-one (4MMP) are key aroma compounds in wine due to the tropical notes they impart. They are released by yeast during alcoholic fermentation from different precursors. However, a large part of 3MH origin remains unknown. In this study, we focused on dipeptide forms arising from glutathione S-conjugates to 3MH and 4MMP. Using labelled tracers, we showed in spiked must the release of varietal thiols from 4 different compounds. We highlighted the interconversion between different forms of precursors under defined enological conditions. Cysteinyl-glycine S-conjugates are partially degraded into cysteine S-conjugates, contrary to γ-glutamyl-cysteine S-conjugates. Glutathione S-conjugate to 3MH can be partially degraded to γ-glutamyl-cysteine S-conjugate to 3MH. For the first time, all these labeled forms of precursors were found to release 3MH or 4MMP between 0.17 and 1% molar conversion yield. Two different yeasts were compared without any significant difference.


Sulfhydryl Compounds/metabolism , Wine/analysis , Cysteine , Fermentation , Glutathione , Saccharomyces cerevisiae , Volatilization , Wine/microbiology
18.
J Am Chem Soc ; 140(3): 1028-1034, 2018 01 24.
Article En | MEDLINE | ID: mdl-29262677

The synthesis of phospholyl(borane) amino acids was stereoselectively achieved by reaction of phospholide anion with iodo α-amino ester derived from l-aspartic acid or l-serine, followed by in situ complexation with borane. Phospholyl(borane) amino acids are easy to store and can be subjected to direct transformation into the corresponding free phospholyl, gold complex, oxide or sulfur derivatives as well as phospholinium salts, thus offering a variety of side chains. After selective deprotection of carboxylic function or amine, C- or N- peptide coupling with an alanine moiety proved the possible incorporation into peptides. Such phospholyl amino acid and peptide derivatives exhibit fluorescent properties with a large Stokes shift (160 nm) and fluorescence up to 535 nm, depending on the phosphole aromaticity and the chemical environment. These phospholyl(borane) amino acids constitute a new class of unnatural amino acids useful for structure-activities relationship studies and appear to be promising fluorophores for the development of labeled peptides.


Amino Acids/chemical synthesis , Boranes/chemical synthesis , Fluorescent Dyes/chemical synthesis , Peptides/chemical synthesis , Phosphorus Compounds/chemical synthesis , Amino Acids/chemistry , Boranes/chemistry , Fluorescent Dyes/chemistry , Models, Molecular , Peptides/chemistry , Phosphorus Compounds/chemistry , Stereoisomerism
19.
Food Chem ; 237: 877-886, 2017 Dec 15.
Article En | MEDLINE | ID: mdl-28764081

Varietal thiols are key aroma compounds in wine issued from multiple and complex origins. Several precursor families have been identified in grapes and must and have been widely studied. But a large part of thiol origin still remains unknown. Thus, we only have an incomplete picture of thiol precursors and there is a lack of knowledge on pre-fermentative mechanisms that can impact their levels. Our study focused on the formal identification and the quantification of new varietal thiol precursors in must. First of all, we synthesized natural and labeled standards using an original multi-step strategy, then we developed and validated a UPLC-MS/MS method that allowed us to identify and quantify for the first time a dipeptide S-conjugate to 3MH, the γGluCys-3MH, in Sauvignon B. We observed the S-4-mercapto-4-methylpentan-2-one-l-cysteinyl-glycine (CysGly-4MMP) and S-4-mercapto-4-methylpentan-2-one-N-(l-γ-glutamyl)-l-cysteine (γGluCys-4MMP) but at too low concentration to be quantified.


Vitis , Cysteine , Isotopes , Sulfhydryl Compounds , Tandem Mass Spectrometry , Wine
20.
Org Lett ; 19(11): 2937-2940, 2017 06 02.
Article En | MEDLINE | ID: mdl-28514165

To evaluate the contribution of triethylsilyl α,α-di-n-propylglycine, namely TESDpg, to induce a defined secondary structure, we have prepared model tripeptides in which TESDpg was inserted in three different positions. Studies in solid state and in solution with adapted techniques showed that TESDpg was able to induce a nascent 310 helix in both crystal and solution states.

...